GATEv6.2 NCAT 4D Phantom simulation with ECAT7 PET

2015.06.23. 강한규

http://wiki.opengatecollaboration.org/UsersGuide

Spherical coordinates (구좌표계) in GATE

http://en.wikipedia.org/wiki/Spherical_coordinate_system

GATEv6.2 예제 파일 "example_TimeActivityCurve" 시뮬레이션 방법

NCAT 4D Phantom (AMIDE view)

PET_ECAT7_System (OpenGL view)

"example_TimeActivityCurve" 예제파일은 NCAT 4D Phantom CT영상 (voxelized-phantom)에 PET영상(voxelized-source)을 F-18로 이용 해서 DoseMap을 AMIDE로 보여줌.

NCAT 4D Phantom (Activity map) GIF animation

Activity map (PET)

0.1 초/frame

NCAT 4D Phantom (Attenuation map) GIF animation

Attenuation map (CT)

0.1 초/frame

Activity map (PET) vs. Attenuation map (CT)

NCAT으로 Real-time motion 시뮬레이션 가능

Activity map (PET)

Attenuation map (CT)

Act + Atn fusion

0.1 초/frame

특정 voxel장기에 Time Activity Curve(TAC)를 넣을 수 있음.

example_dosimetry¥molecular-therapy-I131 NCAT 4D Phantom 시뮬레이션 과정: 8 steps

- 1 Verbosity and Visualization (설정값 출력 및 시뮬레이션 화면)
- 2 Define the NCAT 4D Phantom geometry (환자의 4D CT 영상으로 모션 반영)
- 3 Physics processes (physics list설정)
- 4 Initialization the simulation : Compute cross-section tables for particles, Initialization 이후엔 매크로에서 1,2,3의 설정 값을 바꾸지 못함.
- 5 Source (Ncat voxelized source : 특정 voxel 장기에 Time Activity Curve 반영)
- 6 Digitizer(PET)
- 7 Output setup (ROOT, RawSinogram, ECAT7 파일 출력 설정)
- 8 Start the simulation(시뮬레이션 시작)

NCAT_4D_Phantom_TimeActivityCurve_GATEv6p2_KangHG

GATE6.2 NCAT 4D Phantom 매크로 파일의 구성

data폴더의 내용(1)

Data폴더의 파일 내용(2)

Voxelized-source

/gate/source/voxel/interfileReader/rangeTranslator/readTable

activityRange			DAT 파일
1			
246	246	0,	

/gate/source/voxel/interfileReader/SetTimeActivityTablesFrom

Voxelized-phantom

🔳 range		DAT 파일
4		
0	0	Air false 0.0 0.0 0.0 0.0 1.0
6	6	Lung false 0,8 0,8 0,8 1,0 1,0
15	15	Breast false 0,5 0,5 0,5 1,0 1,0
29	36	RibBone true 1.0 1.0 1.0 1.0 1.0

(attenuation)

NCAT_header H33 파일 !matrix size [1] := 128 !matrix size [2] := 128 !name of data file := data/NCAT_atn_1,bin !number format := unsigned integer imagedata byte order := LITTLEENDIAN scaling factor (mm/pixel) [1] := +3,125000e+00 scaling factor (mm/pixel) [2] := +3,125000e+00 !number of slices := 128 slice thickness (pixels) := +3,125000e+00

range.dat (CT image->Material)

🔳 range		DAT 파일					
4							
0	0	Air false	0,0	0,0	0,0	0,0	1.0
6	6	Lung false	0,8	0,8	0,8	1,0	1,0
15	15	Breast false	0,5	0,5	0,5	1,0	1,0
29	36	RibBone true	1,0	1.0	1,0	1,0	1,0

Pixel intensity

1. Visualisation, Verbosity 설정

Main_RTVPhantom_NCAT4D_PET_ECAT7 KangHG.mac # First Modified: 2015.04.14 Kang Han-Gyu (hangyookang@gmail.com) # Last Modified : 2015.05.28 Kang Han-Gyu (hangyookang@gmail.com) # 4D phantom was moved -40 mm along the z-dir. # NCAT 4D phantom simulation with ECAT7 PET #_______ **# VISUALISATION** /vis/disable 📥 Visualization을 비활성화 시킴. #/control/execute mac/Visualisation.mac i mac 폴더에 있는 visualisation.mac 매크로 파일 실행-> Visualization 설정 **# GEOMETRY** /gate/geometry/setMaterialDatabase GateMaterials.db**中 GateMaterials.db파일 가져오기** ->Materials.xml파일도 따라서 불러들여짐. # World /gate/world/geometry/setXLength 1.5 m /gate/world/geometry/setYLength 1.5 m /gate/world/geometry/setZLength 1.5 m world 설정 /gate/world/setMaterial Air /gate/world/vis/setVisible 1 /gate/world/vis/forceWireframe 시뮬레이션을 진행할 world의 x,y,z크기를 설정. World밖으로 나가는 감마선이나 양전자 등의 입자는 particle tracking이 끝나게 됨. Fig 1.1: World volume.

/gate/geometry/setMaterialDatabase GateMaterials.db → 물질의 정보들이 담긴 GateMaterial.db파일 가져옴. (ex> 물질들의 원자구성,밀도,기체,액체,고체상태 등)

```
#
# WORLD
```

#

/gate/world/geometry/setXLength 400. cm /gate/world/geometry/setYLength 400. cm /gate/world/geometry/setZLength 400. cm

> 시뮬레이션을 진행할 world의 x,y,z크기를 설정. World밖으로 나가는 감마선이나 양전자 등의 입자는 particle tracking이 끝나게 됨.

2.Define the Scanner geometry

SYSTEM(ECAT) /gate/world/daughters/name ecat ➡ World의 하부 볼륨으로 ecat System을 만듬. /gate/world/daughters/insert cylinder ➡ cylinder모양으로 ecat을 만듬. /gate/ecat/setMaterial Air ➡ ecat의 물질을 Air로 설정. /gate/ecat/geometry/setRmax 44.2 cm ➡ ecat의 바깥쪽 반지름을 설정. /gate/ecat/geometry/setRmin 41.2 cm ➡ ecat의 안쪽 반지름을 설정. /gate/ecat/geometry/setHeight 15.52 cm ➡ ecat의 z-축 길이를 설정. /gate/ecat/vis/forceWireframe ➡ ecat의 vis속성을 wireframe으로 설정. (다른 속성:forceSolid)

BLOCK

/gate/ecat/daughters/name vol1 → ecat에 vol1이란 이름을 가지는 하위 volume 생성 /gate/ecat/daughters/insert box → box모양으로 vol1 volume을 만듬. /gate/vol1/placement/setTranslation 427.0 0.0 0.0 mm → x,y,z방향으로 이동시킴. /gate/vol1/geometry/setXLength 30.0 mm /gate/vol1/geometry/setYLength 35.8594 mm /gate/vol1/geometry/setZLength 38.7 mm /gate/vol1/setMaterial Air → vol1의 물질을 Air로 설정. /gate/crystal/vis/setColor yellow → vol1의 색상을 yellow로 설정. /gate/vol1/vis/forceWireframe

2. Define the Scanner geometry

REPEAT CRYSTAL
/gate/vol2/repeaters/insert cubicArray ➡ vol2를 cubicArray방식으로 반복시킴.
/gate/vol2/cubicArray/setRepeatNumberX 1
/gate/vol2/cubicArray/setRepeatNumberY 8
/gate/vol2/cubicArray/setRepeatNumberZ 8
/gate/vol2/cubicArray/setRepeatVector 0. 4.4942 4.85 mm로 설정

Figure 1.5: matrix of crystals

2. Define the Scanner geometry

(중요)섬광결정(vol2)과 블록모듈(vol1)으로부터 감마선 정보(에너지, 반응위치)를 수집하기 위해서는 1.두 volume을 system에 붙이고(attach) 2. vol2 volume에 Crystal Sensitive Detector를 붙여야 함.

1. ATTACH SYSTEM
 /gate/systems/ecat/block/attach vol1
 /gate/systems/ecat/crystal/attach vol2
 wol1을 system/ecat/block에 붙임.
 wol2을 system/ecat/crystal에 붙임.

2. ATTACH CRYSTAL SD

/gate/vol2/attachCrystalSD ➡ vol2에 Crystal Sensitive Detector를 붙임

2.Define the Scanner geometry

TUNGSTEN SHIELD /gate/world/daughters/name carter → carter라는 이름을 가지는 volume 생성 /gate/world/daughters/insert cylinder → cylinder모양으로 volume carter을 만듬. /gate/carter/setMaterial Air → carter의 물질을 Air로 설정. /gate/carter/geometry/setRmax 44. cm → carter의 바깥쪽 반지름을 설정. /gate/carter/geometry/setRmin 28. cm → carter의 안쪽 반지름을 설정. /gate/carter/geometry/setHeight 9. cm → carter의 2-축 길이를 설정. /gate/carter/placement/setTranslation 0.0 0.0 12.5 cm → x,y,z방향으로 이동(Translation)시킴. /gate/carter/vis/forceWireframe → carter의 vis속성을 wireframe으로 설정.

/gate/carter/daughters/name carter1 ➡ carter에 carter1이란 이름을 가지는 하위 volume 생성 /gate/carter/daughters/insert cylinder ➡ box모양으로 carter1 volume을 만듬. /gate/carter1/setMaterial Tungsten ➡ carter1의 물질을 Tungsten으로 설정. /gate/carter1/geometry/setRmax 30.0 cm ➡ carter1의 바깥쪽 반지름을 설정. /gate/carter1/geometry/setRmin 29.0 cm ➡ carter1의 안쪽 반지름을 설정. /gate/carter1/geometry/setHeight 3.0 cm ➡ carter1의 Z-축 길이를 설정. /gate/carter1/vis/setColor grey ➡ carter1의 vis색상을 grey로 설정. /gate/carter1/placement/setTranslation 0.0 0.0 -3 cm ➡ X,y,z방향으로 이동(Translation)시킴.

/gate/carter/daughters/name carter2 → carter에 carter2이란 이름을 가지는 하위 volume 생성 /gate/carter/daughters/insert cylinder → box모양으로 carter2 volume을 만듬. /gate/carter2/setMaterial Tungsten → carter2의 물질을 Tungsten으로 설정. /gate/carter2/geometry/setRmax 40.7 cm → carter2의 바깥쪽 반지름을 설정. /gate/carter2/geometry/setRmin 30.0 cm → carter2의 안쪽 반지름을 설정. /gate/carter2/geometry/setHeight 1.0 cm → carter2의 Z-축 길이를 설정. /gate/carter2/vis/setColor grey → carter2의 vis색상을 grey로 설정. /gate/carter2/placement/setTranslation 0.0 0.0 -2 cm → x,y,z방향으로 이동(Translation)시킴.

2.Define the Scanner geometry

/gate/carter/daughters/name carter3 📦 carter에 carter3이란 이름을 가지는 하위 volume 생성 /gate/carter/daughters/insert cylinder ➡ box모양으로 carter3 volume을 만듬. /gate/carter3/setMaterial Tungsten ➡ carter3의 물질을 Tungsten으로 설정. /gate/carter3/geometry/setRmax 40.7 cm ➡ carter3의 바깥쪽 반지름을 설정. /gate/carter3/geometry/setRmin 39.7 cm ➡ carter3의 안쪽 반지름을 설정. /gate/carter3/geometry/setHeight 3.0 cm ➡ carter3의 Z-축 길이를 설정. /gate/carter3/placement/setTranslation 0.0 0.0 0 cm ➡ x,y,z방향으로 이동(Translation)시킴. /gate/carter/daughters/name carter4 🛶 carter에 carter4이란 이름을 가지는 하위 volume 생성 /gate/carter/daughters/insert cylinder box모양으로 carter4 volume을 만듬. /gate/carter4/setMaterial **Tungsten** ➡ carter4의 물질을 **Tungsten으로 설정**. /gate/carter4/geometry/setRmax 43.7 cm ➡ carter4의 바깥쪽 반지름을 설정. /gate/carter4/geometry/setRmin 40.7 cm 📫 carter4의 안쪽 반지름을 설정. /gate/carter4/geometry/setHeight 1.0 cm ➡ carter4의 Z-축 길이를 설정. /gate/carter4/vis/setColor grey **carter4**의 vis색상을 grey로 설정. /gate/carter4/placement/setTranslation 0.0 0.0 1 cm ➡ x,y,z방향으로 이동(Translation)시킴.

Carter (Tungsten shielding)

2. Voxelized phantom 설정

Voxellized phantom (Ncat) # /qate/world/daughters/name Ncat ➡ world의 하위볼륨으로 Ncat생성 (Ncat은 keyword임). /gate/world/daughters/insert regularMatrix 📫 Ncat에 Voxelized volume을 삽입 #/gate/world/daughters/insert compressedMatrix /gate/Ncat/geometry/insertReader interfile 🔿 Interfile Reader를 삽입 /gate/Ncat/verbose 0 /gate/RTPhantom/insert **RTVPhantom => RTVPhantom**라는 이름으로 RTPhantom생성(RTPhantom은 keyword) /gate/**RTVPhantom**/AttachTo **Ncat →** RTVPhantom을 Ncat에 붙임(attach) /gate/RTVPhantom/SetNumberOfFrames 10 🗰 RTVPhantom(=Ncat)의 총 frame개수를 설정 /gate/RTVPhantom/SetTimePerFrame 0.1 s 🛶 RTVPhantom(=Ncat)의 frame당 시간을 설정 /gate/RTVPhantom/verbose 0 /gate/RTVPhantom/setHeaderFileName data/NCAT_header.h33 ➡ Interfile헤더 파일을 읽어 들여 Ncat에 붙임 /gate/Ncat/interfileReader/insertTranslator range > Ncat에 rangeTranlsator 삽입(CT 영상 밝기 범위-> Material로 변환) /gate/Ncat/interfileReader/rangeTranslator/readTable data/range.dat 🛶 data폴더의 range.dat파일을 읽어 들임. /gate/Ncat/interfileReader/rangeTranslator/describe 1 # Ncat was moved -40 mm along the z-dir to locate at the center of the PET FOV (2015.05.28.KangHG) /gate/Ncat/placement/setTranslation 0. 0. -40. mm **w Ncat을 x,y,z방향으로 translation 시킴**. /gate/RTVPhantom/setBaseFileName data/NCAT 📫 NCAT interfile을 data폴더의 NCAT으로 시작하는 파일명으로 지정 #/gate/Ncat/vis/forceSolid #/gate/Ncat/vis/setColor Blue

/gate/Ncat/attachVoxelPhantomSD ➡ Ncat볼륨에 PhantomSensitiveDetector를 attach시킴. #/gate/geometry/update

3. Physics 설정

/gate/physics/addProcess PhotoElectric /gate/physics/processes/PhotoElectric/setModel StandardModel

/gate/physics/addProcess Compton /gate/physics/processes/Compton/setModel StandardModel

/gate/physics/addProcess GammaConversion /gate/physics/processes/GammaConversion/setModel StandardModel

/gate/physics/addProcess ElectronIonisation /gate/physics/processes/ElectronIonisation/setModel StandardModel e-/gate/physics/processes/ElectronIonisation/setModel StandardModel e+ /gate/physics/processes/ElectronIonisation/setStepFunction e+ 0.2 0.1 mm /gate/physics/processes/ElectronIonisation/setStepFunction e- 0.2 0.1 mm

/gate/physics/addProcess Bremsstrahlung /gate/physics/processes/Bremsstrahlung/setModel StandardModel e-/gate/physics/processes/Bremsstrahlung/setModel StandardModel e+

/gate/physics/addProcess PositronAnnihilation 📫 전자쌍 소멸

3. Physics 설정

Below 3 lines are WRONG! KangHG(2015.04.14)

#-----

Before -> MultipleScattering (X) WRONG

After -> eMultipleScattering (O) OK

#-----

#/gate/physics/addProcess MultipleScattering

#/gate/physics/processes/MultipleScattering/setGeometricalStepLimiterType e- distanceToBoundary
#/gate/physics/processes/MultipleScattering/setGeometricalStepLimiterType e+ distanceToBoundary

I added "e" at the prefix of the MultipleScattering! KangHG(2015.04.14) /gate/physics/addProcess eMultipleScattering /gate/physics/processes/eMultipleScattering/setGeometricalStepLimiterType e- distanceToBoundary /gate/physics/processes/eMultipleScattering/setGeometricalStepLimiterType e+ distanceToBoundary

/gate/physics/processList Enabled /gate/physics/processList Initialized

3. Physics Cut 설정

#=====================================	
/gate/physics/Gamma/SetCutInRegion /gate/physics/Electron/SetCutInRegion /gate/physics/Positron/SetCutInRegion	crystal 1.0 cm crystal 1.0 cm crystal 1.0 cm
#/gate/physics/Gamma/SetCutInRegion #/gate/physics/Electron/SetCutInRegion #/gate/physics/Positron/SetCutInRegion	phantom 0.1 mm phantom 0.1 mm phantom 0.1 mm
#/gate/physics/SetMaxStepSizeInRegion	phantom 0.01 mm
<pre>#/gate/physics/Gamma/SetCutInRegion #/gate/physics/Electron/SetCutInRegion #/gate/physics/Positron/SetCutInRegion</pre>	RTVPhantom 0.1 mm RTVPhantom 0.1 mm RTVPhantom 0.1 mm
#/gate/physics/SetMaxStepSizeInRegion	RTVPhantom 0.01 mm

4 – Initialization the simulation :

(Compute cross-section tables for particles)

/gate/run/initialize # Enable the following lines to display available and enabled processes # /gate/physics/processList Available # /gate/physics/processList Enabled

Initialization 이후엔 매크로에서 아래 설정 값을 바꾸지 못함.

- 1. Scanner의 geometry
- 2. Phantom의 geometry
- 3. Physics process

5. Source (voxelized-source) : 511 keV

Cubic voxelized-source (PET image)

/gate/source/addSource voxel voxel ➡ voxel 이라는 이름의 source를 voxel로 생성

/gate/source/verbose 0

/gate/source/voxel/reader/insert interfile

/gate/RTVPhantom/AttachToSource voxel → RTVPhantom을 voxel source에 붙임 /gate/source/voxel/interfileReader/translator/insert range → voxel 에 rangeTranslator를 삽입 /gate/source/voxel/interfileReader/rangeTranslator/readTable data/activityRange.dat → rangeTranslator 사용 /gate/source/voxel/interfileReader/SetTimeActivityTablesFrom data/acti.range → TAC table을 읽어 들임. /gate/source/voxel/interfileReader/SetTimeSampling 0.1 s → Voxelized-source의 frame당 시간을 설정

/gate/source/voxel/interfileReader/rangeTranslator/describe 1

4D phantom was moved -40 mm along the z-dir. /gate/source/voxel/setPosition -200. -200. -240. mm in Voxel source를 x,y,z방향으로 translation 시킴.

/gate/source/voxel/setType backtoback → backtoback source를 voxel로 생성 /gate/source/voxel/gps/particle gamma → Particle type을 gamma로 설정 /gate/source/voxel/setForcedUnstableFlag true /gate/source/voxel/setForcedHalfLife 6586.2 s } 반감기를 6686.2 s로 설정(F-18) /gate/source/voxel/gps/energytype Mono /gate/source/voxel/gps/monoenergy 0.511 MeV } gamma 는 511 keV의 mono energy로 설정 /gate/source/voxel/gps/confine NULL → gamma source를 다른 볼륨에 confine하지 않음. /gate/source/voxel/gps/angtype iso → gamma source를 isotropic하게 방출시킴. /gate/source/voxel/dump 0 /gate/source/voxel/voxel/verbose 0

5. Source (rangeTranslator)

Voxelized-source

/gate/source/voxel/interfileReader/rangeTranslator/readTable

activityRange			DAT 파일
1			
246	246	0,	

/gate/source/voxel/interfileReader/SetTimeActivityTablesFrom

Voxelized-phantom

(attenuation)

NCAT_header H33 파일 !matrix size [1] := 128 !matrix size [2] := 128 !name of data file := data/NCAT_atn_1,bin !number format := unsigned integer imagedata byte order := LITTLEENDIAN scaling factor (mm/pixel) [1] := +3,125000e+00 scaling factor (mm/pixel) [2] := +3,125000e+00 !number of slices := 128 slice thickness (pixels) := +3,125000e+00

6. Digitizer (energy thresholder)

A D D E R /gate/digitizer/Singles/insert **adder**

READOUT /gate/digitizer/Singles/insert **readout** /gate/digitizer/Singles/readout/**setDepth 1**

ENERGY BLURRING Pulse들이 Singles로 갈 때 511 keV에 대하여 Detector의 에너지 분해능(Energy resolution)을 26%로 반영시킴. /gate/digitizer/Singles/insert **blurring** /gate/digitizer/Singles/blurring/setResolution 0.26 /gate/digitizer/Singles/blurring/setEnergyOfReference 511. keV Singles SinglesAdder Energy blurring energy [MeV] energy [MeV] Singles의 에너지 창을 설정 # ENERGY CUT ■최소 350 keV, 최대 750 keV /gate/digitizer/Singles/insert thresholder /gate/digitizer/Singles/thresholder/setThreshold 350. keV /gate/digitizer/Singles/insert upholder /gate/digitizer/Singles/upholder/setUphold 750. keV

Thresholder= 350 keV upholder= 750 keV

6. Digitizer (Dead time)

6. Digitizer (Coincidence sorter)

COINCL SORTER /gate/digitizer/Coincidences/setWindow 10. ns → 동시계수 시간 창(τ), 주로 5~10 ns /gate/digitizer/Coincidences/setOffset 0. ns → 동시계수 시간창의 time shift (prompt의 경우 0) /gate/digitizer/Coincidences/describe

/gate/digitizer/name delay /gate/digitizer/insert coincidenceSorter /gate/digitizer/delay/setWindow 10. ns /gate/digitizer/delay/setOffset 500. ns /gate/digitizer/delay/setOffset 500. ns /gate/digitizer/delay/describe delay의 결과를 출력화면에 반환시킴.

/gate/digitizer/name finalCoinc ➡ finalCoinc 라는 coincidence sorter를 생성 /gate/digitizer/insert coincidenceChain ➡ coincidenceChain을 finalCoinc에 사용. /gate/digitizer/finalCoinc/addInputName delay /gate/digitizer/finalCoinc/addInputName Coincidences /gate/digitizer/finalCoinc/usePriority true ➡ /gate/digitizer/finalCoinc/describe ➡ finalCoinc의 결과를 출력화면에 반환시킴.

Verbose

#/gate/verbose Physic 0

- #/gate/verbose Cuts 0
- #/gate/verbose Actor 0
- #/gate/verbose SD 0
- #/gate/verbose Actions 0
- #/gate/verbose Step 0
- #/gate/verbose Error 0
- #/gate/verbose Warning 0
- #/gate/verbose Output 0
- #/gate/verbose Core 0

/run/verbose 0 /event/verbose 0 /tracking/verbose 0

7. Output setup (ROOT 출력 파일의 포맷 설정)

출력 변수 : 검출된 감마선의 에너지, 동위원소의 위치, 검출기의 x,y,z 좌표상에서의 감마선 반응 위치,Sinogram 등

매트랩 FBP 코드로

➡ 영상 재구성

readout에 의한 결과파일 생성x

^{**} 7. Output setup (Raw 2D sinogram출력 파일)

System으로 ecat system 또는 ecatAccel system이 선택되어 있는 경우에 사용가능.	2D sinogram 출력 파일명. •파일명.ima (binary, uint16의 2D sinogram)
	▪파일명.dim (ASCII, sinogram의 size 성보) ▪파일명.info (ASCII, *.ima를 읽기 위한 최소한의
/gate/output/sinogram/enable Sinogram output 을 enable시킴.	정보, ex>Ring difference, radial position)
/gate/output/sinogram/setFileName ./RawSinogram_output/2015_0	05_28_RawSinogram_NCAT_Acq1sec_test00
/gate/output/sinogram/setTangCrystalBlurring 1.8 mm 📫 Tangenti	al 방향으로 crystal blurring
/gate/output/sinogram/setAxialCrystalBlurring 1.8 mm 📫 Axial 방정	향으로 crystal blurring
/gate/output/sinogram/verbose 2	
#/gate/output/sinogram/RawOutputEnable false 🛶 Sinogram outpu	t 을 disable시킴.
/gate/output/sinogram/RawOutputEnable true Sinogram output	t 을 enable시킴.
/gate/output/sinogram/StoreDelayeds 📫 Delay창의 sinogram 출력.	
/gate/output/sinogram/StoreScatters 🖬 Scatter된 sinogram 출력.	
/gate/output/sinogram/setInputDataName finalCoinc 📫 finalCoinc	라는 coincidence sorter로 sinogram 출력
/gate/output/sinogram/describe 📫 Sinogram ouput의 세부사항을 화	면에 출력해줌.

example_PET의 경우 #radial bin=288, #azimuthal bin = 288, #Sinogram = 1024임 (매트랩 FBP 코드로 영상재구성 가능) PET_Ecat_Sinogram_ima_binary_read_2015_02_02_KangHG.m

7. Output setup (ECAT7 3Dsinogram 출력 파일)

SETUP - ECAT7 output sinogram

/gate/output/ecat7/enable

/gate/output/ecat7/verbose 2

/gate/output/ecat7/setFileName

/gate/output/ecat7/setFileName ./ECAT7_output/2015_05_28_ECAT7_NCAT_Slice1sec_Acq1sec_test00

/gate/output/ecat7/describe

/gate/output/ecat7/mashing 2

/gate/output/ecat7/span 9

/gate/output/ecat7/maxringdiff 22

/gate/output/ecat7/system 962

/gate/output/ecat7/lsotopeCode F-18

/gate/output/ecat7/IsotopeHalflife 6586.2 second

/gate/output/ecat7/lsotopeBranchingFraction 1.0

ECAT7 의 형태로 3D sinogram이 나옴. (STIR 소프트웨어로 영상재구성 가능) STIR는 open소스이고 웹사이트에서 간단한 등록만 하면 다운로드 가능.

Random number generation

RANDOM

Random engines : JamesRandom, Ranlux64, MersenneTwister(Default)

#/gate/random/setEngineName Ranlux64 #/gate/random/setEngineName JamesRandom /gate/random/setEngineName MersenneTwister

- Random engines의 종류 3가지
- Ranlux64JamesRandom
- J ■MersenneTwister (Default)

#/gate/random/setEngineSeed default ➡ CLHEP internal seed를 가져다가 씀(항상 같은 값임) #/gate/random/setEngineSeed auto 🔿 GATE run마다 random number seed가 새로 생성 /gate/random/setEngineSeed 1021 🔿 사용자가 manual로 [0~900,000,000]사이의 정수값을 입력 #/gate/random/resetEngineFrom fileName → CLHEP internal seed를 가져다가 씀(항상 같은 값임) #/gate/random/verbose 1

8. Start the acquisition (시뮬레이션 시작과 스캔 시간 설정)

# ====================================	======================================		
# EXPERIMENT #	Number of Run = (setTimeStop – setTimeStart)/setTimeSlice		
/gate/application/setTimeSlice (/gate/application/setTimeStart (/gate/application/setTimeStop (50. s - 		
# # LET'S RUN THE SIMULATION! # /gate/application/startDAQ → GATE 시뮬레이션 시작!			

GATEv6.2 예제 파일 "Main_RTVPhantom_NCAT4D_PET_ECAT7_KangHG.mac" 시뮬레이션 끝!

STIR : Software for Tomographic Image Reconstruction

voxelized-source영상 vs. Recon된 PET영상

Voxelized-source 영상

STIR로 Recon 된 PET영상 (Ventricle blood pool 영상) ▷

voxelized source와 Recon 된 PET 영상의 융합

결론

- NCAT 4D Phantom을 이용하여 voxelized-source(activity) 와 voxelized-phantom(attenuation)을 시간에 따른 모션 및 activity 변화를 시뮬레이션 가능
- STIR를 이용해서 얻은 심실의 blood pool영상과 voxelizedsource(activity)간에 영상정합이 잘 이루어짐.