ClearPET Project

LMEF Gate Digi Record Implementation
Version 1.1

CONFIDENTIEL

Luc SIMON?
Daniel STRUL!
Christian MOREL!
May 7, 2003

L IPHE/UNIL

Clear PET Project uln UNIVERSITE
ML

LMF Implementation LAUSANNE

Introduction

This document describes the implementation of a new record type for List Mode
Format (LMF) : the gate digi record.

This new gate digi record keeps the philosophy of the two first LMF implemented
records:

- event record

- count rate record

described in ClearPET list mode format implementation, LMF specifications and
Software Design.

The only difference is that it is impossible to find a LMF file containing only
this record: the gate digi record is always attached to the event record. You can
consider it like an extension of the event record, able to store some specific GATE
simulation informations.

Consequently, the gate digi record has no specific tag (like event and count rate
record), and always follows an event record.

A flag is reserved in the event record header to specify if the event record is
followed by a gate digi record.

1 Gate digi header

1.1 Format

The gate digi header structures describes what is contained in the gate digi record. This
header is stored in the head of the LMF binary file (.ccs file) as a two bytes pattern located
just after the event record pattern.

The 16 bits of the gate digi header pattern are:

TTTT cSpe rGMR RRRR

where:

TTTT = 1100 (tag of gate digi header)

¢ = 1 if the number of compton interactions is stored (else 0)

S = 1 if the source ID is stored (else 0)

p = 1 if the source decay XYZ positions are stored (else 0)

e = 1 if the event ID is stored (else 0)

r = 1 if the run ID is stored (else 0)

G = 1 if the global digi XYZ positions in detector are stored (else 0)

M = 1 if the multiple ID generated by LMF coincidence sorter is stored (else 0)
R RRRR = 0 0000 are reserved bits

Clear PET Project

LMF Implementation

WAk

UNIVERSITE
De
LAUSANNE

1.2 Implemented C-like structure

All informations needed to build the gate digi header are stored in the following structure:

struct LMF_ccs_gateDigiHeader

{
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

};

typedef struct LMF_ccs_gateDigiHeader GATE_DIGI_HEADER;

char
char
char
char
char
char
char

comptonBool;
sourceIDBool;
sourceXYZPosBool;
eventIDBool;
runIDBool;
globalXYZPosBool;
multipleIDBool;

Clear PET Project uln UNIVERSITE
ML

LMF Implementation LAUSANNE

2 Gate digi record

2.1 Format

The gate digi record’s format depends of the gate digi header, but also of the event header.
If the event header’s coincidence bool (C) is TRUE the gate digi record stores informations
concerning two photons (one photon otherwise). If the event header’s neighbour bool (n) is
TRUE, the gate digi record stores informations concerning the XYZ positions of the neigh-
bouring crystals of first photon (and also of second one if C). The number of neighbours
k(NN) depends of the two NN bits of the event header: (cf Software Design)

These records are stored in the body of the LMF binary (.ccs file) in the following format:

Clear PET Project
LMF Implementation

UNIVERSITE
Ltlm & BEUSANNE

XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
XXXX XXXX XXXX XXXX
XXXX XXXX XXXX XXXX
XXXX XXXX XXXX XXXX
XXXX XXXX XXXX XXXX
XXXX XXXX XXXX XXXX
XXXX XXXX XXXX XXXX
XXXX XXXX XXXX XXXX
XXXX XXXX XXXX XXXX
XXXX XXXX XXXX XXXX
XXXX XXXX XXXX XXXX
XXXX XXXX XXXX XXXX

XXXX XXXX XXXX XXXX
XXXX XXXX XXXX XXXX
XXXX XXXX XXXX XXXX

XXXX XXXX
XXXX
XXXX

run ID if r

event ID of 1st photon if e

event ID of 2nd photon if e && C

multiple ID of coincidence if C && M
source ID of 1st photon if S

source ID of 2nd photon if S && C

source X position of 1st photon if p

source Y position of 1st photon if p

source Z position of 1st photon if p

source X position of 2nd photon if p && C
source Y position of 2nd photon if p && C
source Z position of 2nd photon if p && C
digi X position of 1st photon if G

digi Y position of 1st photon if G

digi Z position of 1st photon if G

digi XYZ position of 1st photon neighbours:
6 bytes repeated k(NN) times

if G && n

digi X position of 2nd photon if G

digi Y position of 2nd photon if G

digi Z position of 2nd photon if G

digi XYZ position of 2nd photon neighbours:
6 bytes repeated k(NN) times

if G && n && C

number of compton of 1st photon if ¢ && !C
number of compton of 1st photon if ¢ && C
number of compton of 2nd photon if ¢ && C

Clear PET Project

UNIVERSITE
LMF Implementation U'llm &EIEUSANNE

2.2 Implemented C-like structure

All informations needed to build the gate digi record are stored in the following structure:

struct LMF_ccs_gateDigiRecord
{

unsigned long runlD; // 4 bytes
unsigned long eventID[2]; // 4 bytes
unsigned short sourceID[2];
struct LMF_ccs_XYZpos sourcePos[2];
struct LMF_ccs_XYZpos globalPos[42];
unsigned char numberCompton[2];
unsigned long multiplelD;
s
typedef struct LMF_ccs_gateDigiRecord GATE_DIGI_RECORD;

where the LMF ccs_ XYZpos structure is:

struct LMF_ccs_XYZpos

{
short X;
short Y;
short Z;

3

Contents

1 Gate digi header 1
1.1 Format e e e e e e 1
1.2 Implemented C-like structure 2

2 Gate digi record 3
2.1 Format. e 3
2.2 TImplemented C-like structure 5

