ClearPET Project

List Mode Format Implementation
Version 1.3.2

CONFIDENTIEL

Magalie KRIEGUER!
Luc SIMON?
Christian MOREL?
April 15, 2002
LIIHE/VUB
2IPHE/UNIL

Clear PET Project
Ll.lm QBEIVQ\SITG

LMF Implementation LAUSANNE

Introduction

This document describes the different steps to reach the specifi-
cations that we have chosen in the Software Design report version
2.3 for the CCC ClearPET Project. It presents the different pro-
gramming choices that we have made. In particular, we are going
to describe how the List Mode Format is built from data given
by the DAQ or the Geant4 simulation.

1 General Design

‘ DAQ ‘ ‘GEANT‘ ‘Keyboard‘
LMF
BUILDER

LMF RECORD
CARRIER

‘ LMF = .ccsand .cch files ‘ COINCIDENCE

SORTER

LMF
READER LMF
REBINNER
SINOGRAMS

Figure 1: LMF Implementation : General Design

In order to have a workspace that is able to contain and trans-
port all the information needed to write files in LMF, to search
for coincidences, and to build sinograms, we have defined a LMF
record carrier (cf figure 1) as a group of 7 C-like structures. They
are described in section 3, and are used in each step of the sino-
gram building that we have foreseen. The LMF record carrier
acts as :

Clear PET Project Ll-lﬁ UNIVERSITE
ML

LMF Implementation LAUSANNE

e input of the LMF builder module that creates the .ccs and
.cch files (cf section 2)

e input and output of the coincidence sorter module that as-
sociates events which are in coincidence

e input of the LMF rebinner module that builds the sinograms

e output of the LMF reader module that reads the .ccs and
.cch files

Consequently, a preprocessing system that will be able to fill in
the record carrier for each different sources of data (DAQ and
GEANT4) will have to be implemented.

2 List Mode Format

The List Mode Format (LMF) contains all information for one
acquisition : the records themselves, but also the data acquisi-
tion or simulation parameters, basic information concerning the
animal, and much more.... The LMF is composed of 2 files :
the LMF ASCII header file and the LMF binary scan file, with
extensions .cch and .ccs, respectively.

2.1 The LMF ASCII header file (.cch)

The file with extension .cch is an ASCII file that contains a list
of floating point and string information about the scan, the ac-
quisition, and the animal. This file contains lines formatted as
name of the field : contents of the field, such as for example :

scanner identification : ClearPET GLS
subject weight : 150 g

scan start time : 12:53:07

scan date : Sep 11 2002

2.2 The LMF binary scan file (.ccs)

The file with extension .ccs is a binary file that contains event
wise integer information encoded in records, and parameters nec-
essary to decode these records. The encoding of these data is
stored in the LMF encoding header which is described in sec-
tion 3 of Software Design version 2.3. We can summarize it in
the example given below (16 bit words are given in hexadecimal) :

Clear PET Project Ll-lﬁ UNIVERSITE
ML

LMF Implementation LAUSANNE

€601 : encoding rule for detector ID corresponding to :

Ezemple : 1110 0110 0000 0001 —> sssM Mmmc ccce cecl.

That means : 3 bits reserved for rings and sectors within rings,
hereafter referred to as rsectors, 2 for modules, 2 for submodules,
8 for crystals and 1 for layers.

f67f : scanner description encoded using the above example rule.
Here 8 rsectors, 3 modules/sectors, 4 submodules/module, 64
crystals/submodule, and 2 layers/crystal.

foof : tangential scanner description. Here 8 rsectors/ring, 3
rows of modules/sector, 1 row of submodule/module, 8 rows of
crystals/submodule, and 2 layers/crystal.

060e : axial scanner description. Here 1 ring, 1 column of mod-
ules/ring, 4 columns of submodules/module, 8 columns of crys-
tals/module (the layer bits are always set to 0).

0002 : number of different record types. Here 2 types.

0e30 : encoding pattern for event records using the rule de-
scribed in section 3.1.3 of Software Design version 2.3 :

TTTT cdEn NNgb sRRR. Following this rule, event records con-
sist in coincidences with detector IDs and energies, and azimuthal
and axial positions of the gantry. The tag of event records is 0.

8d60 : encoding pattern for count rate records using the rule
described in subsection 3.1.4 of Software Design version 2.3 :
TTTT sSSc FrbR RRRR. Following this rule, count rate records
consist in singles count rates for all sectors, total coincidence
count rate, and axial and angular speed of the bed/gantry me-
chanics. The tag of count rate records is 8.

Then, the various records are themselves encoded as described
in section 3.1.3 (event record) and 3.1.4 (count rate record) of
Software Design version 2.3.

Clear PET Project Ll-lﬁ UNIVERSITE
ML

LMF Implementation LAUSANNE

3 LMF record carrier

The LMF record carrier is a “cluster” of 7 structures which are detailed below.
The first structure contains information about the LMF header file (.cch),
and the 6 other ones contain information related to the LMF binary scan file
(.ccs).

3.1 LMF cch structure

The DAQ provides all the relevant information about the scan, such as the
scan file name, the scan date, the tracer identification, the injected dose,
etc. (cf. page 4 of Software Design Version 2.3/January 2002). The LMF
builder uses parameters contained in the LMF _cch structure of the LMF
record carrier to create the LMF ASCII header file (.cch).

struct LMF_cch {
char field[charNum]; /#string field description*/
char datal[charNum]; /*string field content*/
char unit[charNum] ;
char def_unit[charNum]; /*default unit used by the
LMF rebinner*/
VALUE value; /*numerical valuex/
VALUE def_unit_value; /*numerical value
converted in default unit value*/

};

typedef union {

char vChar[charNum]; /#value is a string*/

float vNum; /#value is a floating type*/

struct tm tps_date; /*value is a date or a time*/
} VALUE;

LMF_cch scanHeader;

We have defined as symbolic constants a list of default units. These
units are used to convert the numerical values of the LMF header. Units
are identified by their string representations as listed in the table below, and
concatenated with a standard prefix a, f, p, n, mu, m, c, d, da, h, k, M, G,
T, P which defines the order of magnitude :

Clear PET Project
LMF Implementation

UNIVERSITE
WU

Possible Unit Default Unit
Energy eV, J, Wh, cal, erg keV
Distance m, in, ft mm
Surface [Distance]? mm?
Volume [Distance]® mm?
Time h, min, s S
Activity Bq, Ci MBq
Speed [Distance] /[Time] mm/s
Angle degree, rad, grad rad
Rotation Speed | [Angle|/[Time]|, rph, rpm, rps rad/s
‘Weight g, 0z, 1b g
Temperature C,F, K C
Electric field v v
Magnetic field gauss, T T
Pression Pa, atm, bar, mmHg hPa

For example, if the user sets an injected dose of 10 mCi, the LMF record
carrier is loaded with :

e scanHeader.field = "injected dose”
e scanHeader.data = 710 mCi”

e scanHeader.unit = "mGCi”

o scanHeader.def unit = "MBq”

o scanHeader.value = 10.0

o scanHeader.def unit value = 360.0

3.2 LMF ccs_ encodingHeader structure

This structure contains 3 other structures that are common to an acquisition.
It means that these structures contain encoding ID information, and basic
topological parameters of the PET scanner.

struct LMF_ccs_encodingHeader

{

struct LMF_ccs_scanEncodingID scanEncodingID;
/*sssMMMMmmmccccc1=1110000111000001*/

struct LMF_ccs_scannerTopology scannerTopology;

/*scanner Design*/

struct LMF_ccs_scanContent scanContent;

/*definition of the records+*/

};

Clear PET Project Ll-ln UNIVERSITE
N LBE

LMF Implementation LAUSANNE

3.2.1 LMF ccs_ scannerTopology structure

We find here low level information about the scanner topology :

e number of rings

e number of sectors/ring

e number of modules/sector

e number of submodules/module
e number of crystals/submodule
e number of layers/crystal

In all the software, we consider the scanner as its flat development, cor-
responding to the result of cutting the rings, and unfolding them as shown
in figure 2.

!

Ring 0 Ringl Ring2 Ring 3

Figure 2: Numbering of rings. Example of view of the unfolded scanner

Clear PET Project Ll-lﬁ UNIVERSITE
ML

LMF Implementation LAUSANNE

Using the representation of rsectors, we will distinguish between the num-
ber of sectors (i.e rows of rsectors tangentially) and the number of rings (i.e
columns of rsectors axially).

Then the numbering of the modules, submodules, or crystals uses the
same paradigm. As an example, figures 3 and 4 describe a topology of a “1
ring scanner” with 8 sectors that we will call scanner A. Each sector has 3
rows of modules tangentially, and only 1 column of modules axially. Each
module is divided in 4 columns of submodules (and 1 row tangentially).
Finally each submodule is divided in a matrix of 8 rows by 8 columns of
crystals. The numbering of crystals is shown on figure 3.

SECTORO
SECTOR 7 R SECTOR 1
M2 MO %
M1 M1 € %
MO M2 ® eZ
)
M2 MO
SECTOR 6 M1 M1 SECTOR 2
MO M2
MO
M2
M1 M1
Mo e SECTOR 3
SECTORS5 N R
SECTOR 4

Figure 3: Numbering of the sectors and modules. Axial view of scanner A

As you can see the numbering is always (for rings, sectors in a ring,
modules in a sector, submodules in a module and crystals in a submodule)
starting tangentially, and grows along the axis directions specified in figures,
3, and 4.

For the layers, we will number 0 the internal layer (close to the axis) and 1
the external one.

Finally, the structure that contains the number of rings, sectors, modules,
submodules, crystals and layers is :

Clear PET Project

UNIVERSITE
LMF Implementation Ll'lﬁn &EEUSANN€

Module O Module 2
Module 1
Submodule 0
]
Submodule 1
]
e
% € Submodule 2
]
X
eZ
Submodule 3
]

Figure 4: Numbering of the modules and submodules. Tangential view of a
sector of scanner A

struct LMF_ccs_scannerTopology {

unsigned char numberOfRings ;
/*rings*/

unsigned char numberOfSectors ;
/*sectors*/

unsigned char totalNumberOfRsectors ;
/*rings * sectors*/

/*-=-=-=- FOR EACH SECTOR : =-=-=-=-=-=x%/
unsigned char axialNumberOfModules ;
/*modules axially*/
unsigned char tangentialNumberOfModules ;
/*modules tangentially*/
unsigned char totalNumberOfModules ;
/*modules per sector*/

Clear PET Project

WnEk

UNIVERSITE
De
LAUSANNE

LMF Implementation

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15
e
ro_o 16 17 18 19 20 21 22 23
€
24 25 26 27 28 29 30 31
ev> 32 33 34 35 36 37 38 39
z

40 41 42 43 44 45 46 47
48 49 50 51 52 53 54 55
56 57 58 59 60 61 62 63

Figure 5: Numbering of the crystals in a submodule for scanner A

/ —_— =

=- FOR EACH MODULE :
unsigned char axialNumberOfSubmodules ;

/*submodules axially*/
unsigned char tangentialNumberOfSubmodules ;

/*submodules tangentially*/
unsigned char totalNumberOfSubmodules;

/*submodules per modulex*/

/ _—— =

=- FOR EACH SUBMODULE :
unsigned char axialNumberOfCrystals ;

/*crystals axiallyx*/

unsigned char tangentialNumberOfCrystals ;

/*crystals tangentiallyx*/

unsigned char totalNumberOfCrystals ;

/*crystals per submodulex*/

unsigned
/*layers
unsigned
/*layers
unsigned
/*layers

};

char axialNumberOfLayers ;
axially (always 1)*/

char tangentialNumberOfLayers ;

tangentially*/

char totalNumberOfLayers ;

per crystal*/

Clear PET Project

UNIVERSITE
LMF Implementation Ll-lﬁn &EEUSANNG

3.2.2 LMF ccs_ scanEncodinglID structure

This subsection describes how the encoding format of crystal and DOI is
implemented. In the example of section 2.2, we have previewed the encoding
rule sssM MMMm mmcc ccel. This means :

e 3 bits of the ID reserved for the rsectors (8 rsectors maximum)

4 bits of the ID reserved for modules (16 modules maximum)

3 bits of the ID reserved for submodules (8 submodules maximum)

5 bits of the ID reserved for crystals (32 crystals maximum)

1 bit of the ID reserved for layers (2 layers maximum)

But the current implementation will also work if we change, for example,
this format by sssM Mmmc ccce cecl, which means :

e 3 bits of the ID reserved for the rsectors (8 rsectors maximum)

2 bits of the ID reserved for modules (4 modules maximum)

2 bits of the ID reserved for submodules (4 submodules maximum)

8 bits of the ID reserved for crystals (256 crystals maximum)

1 bits of the ID reserved for layers (2 layers maximum)

This is the aim of the scan_encodingID structure :

struct LMF_ccs_scanEncodingID { /*sssM MMMm mmcc cccl*/
unsigned char bitForRsectors ;

/*number of bits for rings/sectors in ID*/
unsigned short maximumRsectors ;

/*2 ** bitForRsectors*/

unsigned char bitForModules ;

/*number of bits for modules in ID*/
unsigned short maximumModules ;

/* 2*xxbitForModules*/

unsigned char bitForSubmodules ;

/*number of bits for submodules in IDx*/
unsigned short maximumSubmodules ;
/*2xxbitForSubmodules*/

unsigned char bitForCrystals ;

/*number of bits for crystals in ID*/
unsigned short maximumCrystals ;
/*2x*bitForCrystals*/

10

Clear PET Project Ll-lﬁ UNIVERSITE
ML

LMF Implementation LAUSANNE

unsigned char bitForLayers ;
/*number of bits for layers in ID*/
unsigned short maximumLayers ;
/*2x*bitForLayers*/

I

3.2.3 LMF ccs_scanContent struture

This structure shows the types of records stored (or not) in the acquisition,
and the tag of these records. This tag is used in the binary scan file (.ccs) to
recognize wich type of records is read. Presently, there are only 2 types of
records (event record and count rate record), but it will be possible to define
other types of records.

struct LMF_ccs_scanContent {

unsigned char nRecord ;
/*number of different records*/

/*first record : event recordx/

unsigned char eventRecordBool ;

/*event recorded if 1%/

unsigned char eventRecordTag ;

/*event tag=0(1st bit of encoding event)*/

/*second record : countrate record*/
unsigned char countRateRecordBool ;
/*countrate recorded if 1x/
unsigned char countRateRecordTag ;
/*countrate tag = 1000 (4 bits)*/

/*+ eventually other records */

};

3.3 LMF ccs_currentContent

This structure contains just one field. It indicates what type of records is
currently loaded in the LMF record carrier.

struct LMF_ccs_currentContent

{

unsigned char typeOfCarrier;

};

The field typeOfCarrier is equal to the tag of the record type (0 for event
record and 8 for count rate record)

11

Clear PET Project Ll-lﬁ UNIVERSITE
miLE

LMF Implementation LAUSANNE

3.4 LMF ccs eventHeader structure

This structure contains all the parameters of the event record acquisition. It
is more or less a list of booleans, where we can find the answer to questions
like :

e Do we want to store the detector’s ID in this acquisition ?
e Do we want to store energy 7

Finally, all the information needed to build the event encoding header
described in Software design version 2.8 is in this structure.

Note that the numbering of the neighbours of a crystal is described in
the figure 6.

11]12] 13
1— 1106 10(5 | 1|6 |14
m 2002 410|2 9]4]0]2 (15 Numbering
3 37 208 |3 [7 |16
— 19| 18| 17
0 1 2 3 Neighbourhood order
0 4 8 20 Number of neighbours

Figure 6: Numbering of a crystal neighbours.

struct LMF_ccs_eventHeader {
unsigned char coincidenceBool;
/*coincidence if 1, singles if 0%/
unsigned char detectorIDBool;
/*detector ID recorded if 1%/
unsigned char energyBool;
/*energy recorded if 1%/
unsigned char neighbourBool;
/*energy of neighbours recorded if 1%/
unsigned char neighbourhoodOrder;
/*¥0, 1, 2, or 3 (cf fig. 1)*/
unsigned char numberOfNeighbours;
/*Number of neighbours*/

12

Clear PET Project
Ll.lm L BEIV€RSIT€

LMF Implementation LAUSANNE

unsigned char gantryAxialPosBool;
/*gantry’s axial positionx*/

unsigned char gantryAngularPosBool;
/*gantry’s angular position*/

unsigned char sourcePosBool;
/*source’s position*/

};

3.5 LMF ccs_ eventRecord structure

This structure must accept any event record. It must contain all the infor-
mation needed to build an event record for the binary scan file (.ccs). Here
is the structure we have figured out. You can notice that the energy, and the
crystal IDs will be stored in an array dynamicaly allocated from the pointers
*energy and *crystallD. The maximum dimension of these 2 arrays is 2 x 21,
to store information on the central crystal and its 20 neighbours for the first
and the second annhilation photons.

struct LMF_ccs_eventRecord {
unsigned char timeStamp[8] ;
/* time stamp on 63 bits but maybe less...*/
unsigned char timeOfFlight ;
/* time of flight*/
unsigned short *crystallDs;
/*crystal’s ID (1st & 2nd and neighbours)x*/
unsigned char *energy;
/*energy in each crystalx*/
unsigned short gantryAxialPos ;
/*gantry’s axial positionx/
unsigned short gantryAngularPos;
/*gantry’s angular position*/
unsigned short sourceAngularPos ;
/*external source’s angular position*/
unsigned short sourceAxialPos ;
/*external source’s axial position*/

};

Warning : the time stamp in the LMF binary scan file is stored on 63
bits for singles events (absolute time in units of about 1 ps), and on only
23 bits for coincidence events (relative time to the previous event record in
units of about 1 ms).

13

Clear PET Project

UNIVERSITE
LMF Implementation Ll-lﬁn &EEUSANNG

3.6 LMF ccs countRateHeader structure

It contains all the information needed to build the count rate encoding header
(exactly as the eventHeader structure for the event encoding header).

struct LMF_ccs_countRateHeader {
unsigned char singleRateBool ;
/*singles countrate recorded if =1%/
unsigned char singleRatePart ;
/*rsector (1), module(2),
submodule(3) or total (0)*/
unsigned char totalCoincidenceBool ;
/*total coincidence recorded if =1%/
unsigned char totalRandomBool ;
/*total random rate recorded if =1x%/
unsigned char angularSpeedBool ;
/*angular speed recorded if =1%/
unsigned char axialSpeedBool ;
/*axial speed recorded if =1x/

};

3.7 LMF ccs_countRateRecord structure

This structure must accept any information from count rate record. We can
notice that the singles rate per ring, per sector, or per module will be stored
in an array dynamically allocated from the corresponding pointers of this
structure.

struct LMF_ccs_countRateRecord {

unsigned char timeStamp[4];
/*time stamp*/

unsigned short totalSingleRate[2] ;
/*total single ratex/

unsigned short *pRsecorRate;
/*rsector’s rate pointer*/

unsigned short *pModuleRate;
/*module’s rate pointerx*/

unsigned short *pSubmoduleRate;
/*submodule’s rate pointer*/

unsigned short coincidenceRate ;
/*coincidence rate*/

unsigned short randomRate ;
/*random ratex/

unsigned char angularSpeed ;
/*gantry’s angular speed*/

14

Clear PET Project Ll-lﬁ UNIVERSITE
ML

LMF Implementation LAUSANNE

unsigned char axialSpeed ;
/*gantry’s axial gantry*/

};

4 Other Modules

4.1 LMF reader

This module is able to read a LMF ASCII header file (.cch) and/or LMF
binary scan file (.ccs), and to load the LMF record carrier, record by record,
using a buffer dynamically allocated to accept the size of the records.

4.2 LMF builder

This module must write the LMF files (.cch and .ccs) from the content of
the LMF record carrier. It is buffering each record before writing it to the
file.

4.3 Coincidence sorter

This module should read different event record carriers and update those
after having associated coincidences between event records of singles.

This is done by using the time stamp of the singles event records. Con-
sequently, this module should buffer enough record carriers to be able to
associate coincidences. Its output is a record carrier that hosts a coincidence
event.

4.4 LMF rebinner

This module should finally build the sinograms after the LMF files have been
read by the LMF reader. To build the sinograms, the record carriers have to
be histogrammed. Once the sinogram is built, we will use the STIR library to
reconstruct images. The LMF rebinner will save the sinograms in an interfile
output format compatible with the STIR library (http://stir.irsl.org).

15

Clear PET Project

UNIVERSITE

LMF Implementation Ll-lﬁn &EEUSANNG

Contents
1 General Design

2 List Mode Format
2.1 The LMF ASCII header file (.cch)
2.2 The LMF binary scan file (.ccs)

3 LMF record carrier

3.1 LMF cchstructure.
3.2 LMF ccs_encodingHeader structure

3.2.1 LMF ccs scannerTopology structure

3.2.2 LMF _ccs_scanEncodingID structure

3.2.3 LMF _ccs_scanContent struture
3.3 LMF ccs_currentContent,
3.4 LMF ccs eventHeader structure
3.5 LMF ccs_eventRecord structure,
3.6 LMF ccs countRateHeader structure
3.7 LMF ccs_countRateRecord structure

4 Other Modules
41 LMFreader e
4.2 LMF builder
4.3 Coincidence sorter oo
44 LMF rebinner

16

