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Annihilation Density Distribution Calculations
for Medically Important Positron Emitters

Matthew R. Palmer, Member, IEEE, and Gordon L. Brownell

Abstract— The effect of positron range on the image-plane
resolution of tomographic images is evaluated through calcula-
tions based on a model which employs beta-decay energy spectra
and an empirical range formula. Predicted range distribution
functions are compared with published measurements for three
medically important positron emitters; ''C, ®Ga, and *’Rb. The
effect of tomographic slice thickness on point-source annihilation
distribution functions is also demonstrated. Line-spread functions
are calculated using the model, for the above isotopes as well
as for * F, 1°0, and "°N. Image-plane resolution predictions are
made for high-resolution positron cameras for various positron
emitting isotopes with end-point energies up to 4 Mev.

I. INTRODUCTION

HE spatial resolution of positron emission tomography

(PET) cameras has steadily improved over the past few
years. Cerebral studies in man are now possible with an in-
plane spatial resolution of better than 5 mm full-width at
half-maximum (FWHM) [1], [2]. A central question for high-
resolution PET studies, is that of the fundamental limits of
imaging with positrons—the positron range and the deviation
of annihilation gamma rays from 180 degrees. The latter
has been well characterized [3], but the effects of positron
range are not so well understood. The resolution of tomo-
graphic instruments is approaching these fundamental limits,
generating renewed interest in positron range effects and the
possibility of reducing them through instrument design or
image postprocessing [4], [5].

Positron range measurements have been attempted for a
number of emitters by several groups [6]—[8]. The consid-
erable variation in experimental results has lead to some
controversy over the magnitude of this effect. Of the published
measurements to date, Derenzo’s work appears to be the most
accurate, and that which is likely to reduce the systematic
errors introduced by detector limitations [7], [5]. He has
found that annihilation density distributions, projected onto
the sinogram axis, arising from near-point sources are well
approximated by a bi-exponential model. Approximate model
parameters have been published for the medically-important
isotopes of 18F, 11C, %Ga, and 82Rb. While these estimated
model parameters are adequate for certain predictions, the
central issue of the extent and nature of image-plane reso-
lution loss due to positron range blurring has yet to be fully
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resolved. In addition, Derenzo’s experimental technique is not
well suited to the measurement of range distributions from
nongenerator produced, short-lived isotopes such as 3N and
150, and so positron range effects are difficult to assess for
these isotopes.

Since the Derenzo publication in 1979, little attention has
been directed towards the issue of positron range and its effect
on the spatial resolution of PET imagery. As the resolution of
positron cameras improves, the resolution limits imposed by
positron range will become a significant fraction of the overall
systematic error associate with PET measurements. The goal of
this work is to develop a model which will predict the effects
of positron range in terms of physical parameters. In this way,
the data may be applied to evaluate competing designs for new
tomographs and to evaluate proposed schemes that attempt to
correct PET measurements for positron range effects.

[I. MODEL DEVELOPMENT

Consider an isotropically radiating point source of monoen-
ergetic positrons located at the origin of a three-dimensional
absorber. For positrons with relatively low end-point energies
interacting with materials that have low atomic numbers (rele-
vant in the current study; end-point energy, Fo < 4 MeV, and
atomic number, Z =~ 7) the predominant mode of energy loss
is through ionization and excitation of atomic electrons since
the Bremsstrahlung loss is very small [9]. A positron typically
interacts with a great number of electrons before reaching
thermal energy [10, pp. 268-275]. A positron trajectory is
tortuous and, following a small number of collisions which
could involve large scattering angles, the particle’s direction
and position is nearly independent of its initial direction
of motion. Under these conditions, in order to simplify the
analysis, we treat the problem as though the positrons behave
diffusively (see Evans [11, pp. 627-629] for a discussion
that supports this argument). With this assumption, we expect
the equilibrium particle density resulting from a point source
application of monoenergetic positrons to be represented by a
three-dimensional Gaussian distribution centered at the origin.
Furthermore, the energy spectrum for particles after traversal
through an absorber, is approximately independent of the
absorber thickness (see Evans [11, p. 629], and so we assume
that the ratio of particle density to annihilation density is
approximately constant. The three dimensional annihilation
density is therefore approximated by
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where r is the radial distance from the origin and o = o(E;)
is the standard deviation, a function of the initial energy E;.

Providing we can find an expression which relates the mono-
energetic distribution parameter o to the emission energy,
the annihilation density for a point-source beta emitter in an
infinite isotropic medium is given by

Eo
D(r) = / Don(r; EN(E,) dE; @
0

where the energy spectrum is denoted N(E;), and represents
the probability that a particle’s initial energy lies in the interval
(E;, E; + dE;) [11, pp. 548-554], and E, is the beta end-
point energy.

A. Range-Energy Relationship

Tabata, Iot, and Okabe have determined a semi-empirical
expression that relates electron range and initial energy by
considering experimental results available prior to 1972 [12].
In these experiments, a collimated beam of monoenergetic
electrons is directed at a slab of test material. A detector
located beyond the exit surface of the slab measures the
intensity of the emerging beam. The slab thickness is varied,
and a curve of transmitted fraction versus slab thickness is
thus produced. The extraprolated range R, is measured from
the curve by extrapolating the linear portion of the curve to the
background. The expression for R.,, valid for electrons with
initial energies in the 300 eV to 30 MeV range, is a function
of incident electron energy and the effective atomic number
and atomic weight of the stopping material.

Values for the effective atomic weight and atomic number
for water are A,, = 13.0 and Z,, = 7.22, and for polyurethane,
Ap = 12.2 and Z, = 6.51 (calculations are based on formulas
given in [13, pp. 130-131]). These two materials have rel-
atively low atomic number and therefore the expression for
R.x very much simplifies to

_ hE?
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where R,y is expressed in mm, and with incident energy E;
expressed in MeV. The empirical constants are defined as
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To a first approximation, we expect this equation to be valid for
positrons since the stopping power of a material is approxi-
mately the same for electrons and positrons.! We can apply
the foregoing assumptions to the geometry of the electron
beam transmission experiment by taking the point at which the
beam hits the test slab as the coordinate system origin. At the
exist surface of the test slab a detector records the intensity
of the emerging beam, weighted according to the detector’s
aperture function. Following the above analysis, we assume

by

1We expect the difference in stopping power to be less than about 5%
in the energy range of interest here. For higher end-point energy emitters
such as 2Rb, the difference may be greater than this (see, for example, [14])
which may be a factor contributing to the higher discrepancy between model
generated predictions and published measurements that we observe for 32Rb.

that the intensity of the emerging beam is representative of
the annihilation density at the surface of the slab. Since we
are dealing with a three-dimensional Gaussian distribution,
summation over a plane surface, weighted by the detector
aperture function results in a one-dimensional Gaussian trans-
mission curve, provided that the detector aperture function
is also approximately Gaussian in form. Furthermore, the
standard deviation of the transmission curve is the same
as that of the original three-dimensional annihilation density
distribution. If we draw a line tangent to the Gaussian shaped
transmission curve, at the point of maximum slope it will
intersect the range axis at twice the standard deviation. That
is, the relationship between initial energy and distribution
parameter o is approximated by

o(E;) = Rex(E:)/2 )

where E; is the initial energy and R, is the extrapolated
range, defined in (3).

IIl. MODEL VALIDATION

The experimental results presented by Derenzo {7], [5]
were obtained with the Donner 280-Crystal tomograph using
small sources of positron emitter placed inside polyurethane
foam cylinders. The tomograph’s in-plane resolution and slice
thickness were both reported to be 7.5 mm FWHM. Point-
spread functions (PSF) were presented for 'C, 8Ga, 82Rb [7]
and then later for 18F [5]. For the purpose of comparing model
predictions and experimental results, we have chosen to work
only with the isotopes for which raw data were presented ('C,
Ga, and %2Rb) since we are not confident in the accuracy of
the postprocessing schemes nor the exact form of the suggested
model.2

In order to obtain an expression for projected annihilation
density functions suitable for comparison with experimental
results, (2) must be manipulated, first by taking a weighted
Abel transform in the axial direction, followed by an Abel
transform (see Appendix) to project the distribution onto the
sinogram axis. The weighted Abel transform is taken with a
standard deviation corresponding to the tomograph resolution
in the axial direction, ;. The two-dimensional axial-plane, or
image-plane, annihilation density distribution is given by

e o]

/ D(\/p2 + 22)6_22/203 dz
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As {D(r); p} (6)

Q(p)

where p is the radial distance in the axial plane. The one-
dimensional projected annihilation density distribution is given

2In order to isolate positron range effects, Derenzo repeated the experiment
with the sources enclosed in aluminum casings. The intent was to measure the
blurring due to other systematic effects (source size, detector size, and angular
deviation of annihilation gamma rays) and then deconvolve the measured data
for these effects. Problems exist with this data because of gross undersampling,
and because at least for !'C, the projected PSF exhibits sharper resolution than
a theoretical point source in this machine.
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Fig. 1. Comparison of model predictions (smooth curves) and Derenzo’s experimental results (dots) for projected annihilation density distributions due
to point sources of positron emitting isotopes.

by
P(u) = 7 Q(\/u2—+t2> dt

= A{Q(p); u} = A{A; {D(7); p}; u} @)

where u is the displacement from the sinogram-axis origin.
Because of the linearity properties of these two transforma-
tions, we can evaluate the two Abel integrals directly on
the monoenergetic kernel of (1), and then rewrite (2) in the
sinogram-domain as

Eo
0

P(u) = ®

where the projected mono-energetic kernel P, is given by

)
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and where we have introduced oy, the effective standard
deviation, which is given by

o5 =1/o?+ 0}

Numerical integration was performed according to (8) to
produce projected positron range distributions for the three
isotopes for which raw experimental data were available; 11C,
68Ga, and 82Rb. The resulting curves are shown overlaid
with Derenzo’s measured results in Fig. 1. In each case, the
model-generated curve matches the experimental data very
closely. It should be emphasized here that the model was
not fit to the data (except for an offset adjustment, performed
visually, which corresponds to a single arbitrary normalization
factor) since there are no free parameters. The value used
for o, corresponds to the reported slice thickness of 7.5 mm
FWHM [7] and the function Reyx(E;), which determines &,
was calculated according to (3) and (4), using the effective
atomic weight and atomic number of polyurethane given
previously. Both these parameters were scaled according to the
density of the polyurethane foam used in each of Derenzo’s
measurements

(10)

A. Effect of Slice Thickness

A limitation to the general usefulness of Derenzo’s experi-
mental results and his empirical model for projected annihila-
tion density distributions is due to the tomograph’s limited
resolution in the axial direction, or slice “thickness.” It is
possible however, to correct the data (or at least the empirical
model expressions) to remove the effect of slice thickness.
Expressing (6) as an inverse weighted Abel transform, we
have

D(r) = A;H{Q(p)i7}
and then employing (A-7) from the Appendix, we obtain

D) = g { Q) -} @)

Sampling the three-dimensional distribution D on the plane,
z = 0, produces a two-dimensional distribution that can
be projected (regular Abel transform) to obtain the one-
dimensional, projected annihilation density distribution, unaf-
fected by slice thickness

P.(u) = A{D(r); u}
= afa{ e - Qmrfiuf. 0

Finally, we make use of the Abel transform’s commutation and
differentiation properties ((A-8) and (A-4) in the Appendix),
and the definition of Q to obtain the final expression for P, as

Pu(u) = %A,,{Uigp(ul) - P'(ul)/ul;u} 14)

(11)

where u; is a dummy variable of integration.

We have employed this expression to correct Derenzo’s em-
pirical model for the projected annihilation density distribution
function due to 'C. The resulting range distribution curves are
shown in the graph of Fig. 2. As would be expected, for radii
much greater than the slice thickness there is no difference
between the two curves. As r approaches zero however, the
difference becomes significant. This calculation demonstrates
that the shape of the projected annihilation density distribution
arising from a point source depends on the tomographic
instrument’s slice thickness. Instruments with narrower slices
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Fig. 2. Comparison of projected annihilation density distributions, as mea-
sured and following correction for slice thickness effects, for a point source
of !IC.

will measure projected range distributions due to point sources
that are more sharply peaked towards the origin.

B. Line-Spread Functions

A representation of positron range blurring effects which is
independent of slice thickness is obtained by considering the
two-dimensional line-spread function (LSF), rather than the
PSF. This is obtained by taking the forward Abel transform
of the three-dimensional point-source distribution,

S(p) = A{D(r); p}. (1s)
Again we take advantage of the linearity property of the
various integral transformations, to express the LSF S in
terms of a superposition of range distributions due to projected
monoenergetic point sources,
E,
[ @ntrsEaN(E) aE,
0

S(r) = (16)

with the two-dimensional monoenergetic kernel defined by

Qm(r; E;) = %6772/202. 17

2

o

We have calculated LSF’s by numerically integrating (16) for

six positron emitting isotopes that are of medical interest.
There results are shown in the graphs of Fig. 3.

C. Image Resolution Loss

Due to the form of the annihilation density model of (16) it
is straight-forward to obtain an expression for the image-plane
resolution function which combines the positron range effects
and those due to other systematic degradations. Consider now
a camera resolution function which is approximately Gaussian
in form, with a standard deviation of o.. The combined LSF is
therefore given by the two-dimensional convolution of these
terms, or

Li(r) = L.(r) » S(r) (18)

where L, is the combined LSF, L. the camera’s LSF describ-
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Fig. 3. Line-spread functions representing annihilation density distributions

calculated by Abel transformation of the three-dimensional point source model
equation. Resulting distributions due to line sources of six positron emitters
are shown.

ing all systematic effects other than positron range, and S is
the LSF due to positron range blurring, as given in (16). The
resulting expression for the combined effects is

E, 1
Lt(r) = / 27!'0'2
rd e

in which a new effective standard deviation 0., which is a
function of energy F; has been introduced and is given by

oe =02+ 02 (20)

where o, is the standard deviation which parameterizes the
camera’s LSF. Although o, has the same form as oy, intro-
duced earlier, there is an important difference—o. in-
corporates a blurring effect due to the camera’s limited
in-plane resolution, (o.) and oy incorporated the blurring
effects associated with the slice “thickness” (o).

We have performed calculations based on (19) over a range
of beta end-point energies and for three hypothetical isotopes
having atomic numbers 10, 25, and 40, respectively. As a
reference, we have set the camera LSF to be Gaussian in form,
and have calculated combined LSF’s for camera resolutions
of 1 mm, 2 mm, 4 mm, and 6 mm FWHM. The results for
these twelve parameter variations are illustrated in the graphs
of Fig. 4 as FWHM and full-width at one tenth maximum
(FWTM) values of the combined LSF plotted against isotope
end-point energy.

e~ 129 N(E;) dE;

19

IV. DISCUSSION

We have introduce a model for predicting the annihila-
tion density distribution arising from a point source positron
emitter. The model combines the beta-decay energy spectrum
and an empirical formula that describes the experimental
results of electron beam transmission experiments. We have
demonstrated that the model predictions are in close agreement
with published data for experimental measurements made on
three positron emitters. We have thus used the model to
evaluate image-plane line-spread functions due to range effects
for a total of six medically important radio-isotopes.

This work has relied on the experimental measurements of
Derenzo [7], [5] which we feel are the most accurate to date.
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Fig. 4. Model predictions of FWHM (left) and FWTM (right) due to the
combined effects of tomograph resolution and positron range. Curves are
shown for hypothetical isotopes with three different atomic numbers Z as
marked. Detector LSF is assumed to be Gaussian in form, with intrinsic spatial
resolution of 1 mm, 2 mm, 4 mm, and 6 mm FWHM, as indicated.

The model presented here produces results which are in close
agreement with those experimental data, and can be used to
predict annihilation distributions due to positron range effects
for any isotope.

Both the experimental technique of Derenzo, and the model
introduced here are expected to produce the least reliable
results at or near the point of emission—the experiment,
because of instrument resolution limitations, and the model
because of the assumption that positrons behave diffusively.
Indeed we have observed the greatest systematic difference
between the two results towards the origin of the projected
point-spread functions (see Fig. 1).

As expected, the degree of image resolution loss is strongly
dependent on end-point energy. To a lesser degree, but nev-
ertheless significant, we observe a loss of image resolution
that is related to the atomic number of the positron emitting
isotope. This dependence is not surprising given that the shape
of the emission energy spectrum depends on atomic number as
well as end-point energy. This result suggests that the blurring
effect of an 150 tracer should be less severe than that of ®Ga to
a great degree than would be expected from a consideration of
end-point energy alone. Indeed Cho et al. [6] have made note
of this apparent discrepancy. From our results for a camera
resolution of 1 mm FWHM, the combined O FWHM is
predicted to be 12 percent lower and the FWTM 18 percent
lower than the corresponding results for %Ga although the O
end-point energy is only 8% lower than that of 8Ga.

In addition to the dependence of these results on atomic
number, the graphs of Fig. 4 demonstrate that the nature of the
resolution loss depends on the camera resolution. The effects
of positron range cannot be estimated by adding in quadrature
an approximate blurring parameter to the camera resolution, as
would be possible for Gaussian shaped annihilation distribu-
tions. It is clear that the most serious resolution degradation is
due to the long tails of the distribution and therefore the effects
are more apparent in the FWTM than the FWHM results. In
addition to this, these results suggest that higher resolution
cameras will be less affected by positron range effects, if
we consider the loss of resolution as seen in the FWHM
measure of the combined LSF curves of Fig. 4. For a camera
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possessing a spatial resolution of 3 mm FWHM the positron
range effect degrades the resolution by an extra 2 mm for a
hypothetical 4 MeV isotope, compared to only 1 mm increase
in combined FWHM measurement for the same isotope in a
camera possessing 1 mm FWHM spatial resolution.

As the spatial resolution of future positron tomographs
improves, the blurring effect of positron range is likely to
become more of a concern. While the long tails of the
annihilation distribution functions cause a portion of the image
to be blurred severely, the sharp peaks, as Derenzo has pointed
out, do help to retain high spatial frequency information.
This type of degradation is therefore well suited to image
restoration schemes [15], that remove the severely blurred
image components, operating much like the scatter correction
schemes that are in general use in the PET field [16]. The
model presented in this work may assist the designers of future
high-resolution PET detectors as well as the designers of image
postprocessing and restoration schemes.

APPENDIX
ABEL TRANSFORMS

Two integral transformations naturally arise in the anal-
ysis of tomographic imaging systems: the Abel transform
and a Gaussian weighted variation (referred to here as the
weighted Abel transform). Both these transformations define
mappings between multidimensional symmetric distributions.
The forward transforms reduce the dimensionality by one. By
symmetry, we mean that the function can be expressed in terms
of a single scalar variable which is the Euclidian distance from
the coordinate system origin.

A.1 Able Transform
The Abel transform is defined by the integral expression,

Afyay=p) = [ f(VETE)ar A

in which p is any parallel projection of a circularly symmetric
function, or the Abel transform of f. The Abel transform has
an inverse, which is given by the expression

A~ p(u);r}y = f(r) = —%/—tz—l\/_t—r_zp’(t) dt. (A-2)

Derivations can be found in [17, p. 406], and [18, p. 262],
and a more rigorous mathematical development is presented
in [19].

It can be shown by manipulation of these two equations that
the forward and inverse Abel transforms are related, i.e.,

A0 = ‘—;A{ij—fu}

Furthermore, a simple but very useful expression can be
obtained by differentiating the expression for the forward

transform, (A-1),
1dp 1df
wdu A{ r dr’u}'

(A-3)

(A-4)
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A.2 Weighted Abel Transform

We define here a variation on the Abel transform, referred
to as the weighted Abel transform, that introduces a Gaussian
term into the Abel integral. This new transform is defined by

As{f(r); u} = po(u)

= ]c f(\/m)e"”/202 dt (A-5)

where the parameter o is the Gaussian standard deviation.
Multiplying this equation by an exponential term, we ob-
tain the relationship between the weighted and regular Abel
transform,

po(We™ 2" = A{fme" 2} (a)
By making use of this relationship, and the equation for the

inverse Abel transform, (A-2), we obtain an inversion formula
for the weighted Abel transform:

-1 =i f1 _ Ldps
Ao} = A Sopot) - L2

;r}. (A-7)
We also note that both transforms, .4 and A, are linear, and
they commute, i.e.,

A{A{f(r);u};r} = AAA{f(r);u};r). (A-8)
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